Höchstspannungsspezifischer elektrischer Isolator, manuell oder automatisch betrieben, zur Zerstörung
Beschreibung des Produkts:
Ein Hochspannungsschalter ist eine Art elektrischer Schalter, der in Stromversorgungssystemen zum Zwecke der Wartung oder Sicherheit verwendet wird, um einen Stromkreis vom Rest des Systems zu isolieren.Der Begriff "vertikal" bezieht sich auf die Ausrichtung des Isolators., die senkrecht auf eine Trägerkonstruktion montiert ist.
Hochspannungselektrische Isolatoren werden üblicherweise in Hochspannungsübertragungs- und Verteilernetzwerken verwendet, um Teile des Netzes für Wartungs- oder Reparaturarbeiten zu isolieren.Sie sind für hohe Spannungen und Ströme ausgelegt und werden oft an Außenstellen installiert.
Hochspannungselektrische Isolatoren bestehen in der Regel aus einem Satz von stationären und beweglichen Kontakten, die durch eine Luftlücke getrennt sind.die Kontaktlinsen sind miteinander in KontaktWenn der Isolator geöffnet wird, werden die Kontakte getrennt.Unterbrechung des Stromflusses durch die Schaltung und Isolierung vom Rest des Systems.
Hochspannungs-elektrische Isolatoren sind ein wichtiger Bestandteil der Sicherheit und Zuverlässigkeit des Stromsystems und sind für den Betrieb unter unterschiedlichen Umweltbedingungen ausgelegt.Sie unterliegen häufig strengen Prüfungs- und Zertifizierungsanforderungen, um sicherzustellen, dass sie den Industriestandards für Leistung und Sicherheit entsprechen.
Anwendung:
1Schaltkreislaufisolation: Hochspannungs-elektrische Isolatoren werden hauptsächlich zur Isolierung von Abschnitten eines Stromnetzes für Wartungs- oder Reparaturarbeiten verwendet.Dies ermöglicht es den Arbeitnehmern, sicher auf dem isolierten Stromkreis zu arbeiten, ohne dass ein Stromschlag oder andere elektrische Gefahren entstehen..
2.Sicherheit: Hochspannungs-elektrische Isolatoren werden auch als Sicherheitsvorrichtung zum Schutz von Arbeitnehmern und der Öffentlichkeit vor elektrischen Gefahren verwendet.Hochspannungs-elektrische Isolatoren verhindern den versehentlichen Kontakt mit leistungsfähigen Systemteilen und verringern das Risiko von elektrischen Unfällen.
3Fehlersicherung: Hochspannungs-elektrische Isolatoren können auch zum Schutz des Stromsystems vor Fehlern wie Kurzschlüssen und Überlastungen verwendet werden.Hochspannungs-elektrische Isolatoren verhindern, dass sich der Fehler auf andere Teile des Systems ausbreitet und weitere Schäden verursacht..
4.Schalter: Hochspannungs-elektrische Isolatoren können als Schaltvorrichtung zur Steuerung des Stromflusses in einem System verwendet werden.Der Stromfluss kann nach Bedarf an verschiedene Teile des Systems geleitet werden..
5.Prüfung: Hochspannungselektrische Isolatoren können auch für Prüfzwecke verwendet werden, z. B. zur Messung der Spannung oder des Stroms in einem Stromkreis oder zur Prüfung der Leistung anderer Komponenten des Systems.
Aufbau:
1.Porzellan Isolatorkörper: Der Isolatorkörper ist der Hauptbestandteil des Isolators und ist in der Regel aus hochfester Porzellan.Es ist so konzipiert, dass es eine elektrische Isolierung zwischen dem Leiter und der Tragstruktur bietet., und wird in die gewünschte Form und Größe geformt.
2.Metallende Armaturen: Die Metallende Armaturen befinden sich am Isolatorkörper und stellen ein Mittel zur Verbindung des Isolators mit dem Leiter und der Tragstruktur dar.Sie sind in der Regel aus verzinktem Stahl oder einem anderen korrosionsbeständigen Material hergestellt, und können für eine einfache Montage mit speziellen Merkmalen wie Spalten oder Kugel-Steckverbindungen ausgelegt sein.
3Versiegelungsmittel: Eine Versiegelungsmittel wird verwendet, um die Verbindung zwischen dem Isolatorkörper und den Metallendverbindungen zu versiegeln und zu verhindern, dass Feuchtigkeit und Verunreinigungen ins Innere des Isolators gelangen.
4.Hardware: Hardware wie Schrauben, Muttern und Wäscher werden verwendet, um die Metallendverbindungen an den Isolatorkörper und die Trägerstruktur zu befestigen.
Fittingkappen: Fittingkappen werden verwendet, um die Metallendverbindungen vor Korrosion und Beschädigung zu schützen, und können aus Kunststoff oder anderen Materialien bestehen.
5.Zusätzliche Eigenschaften: Abhängig von der spezifischen Anwendung können Porzellan-Hochspannungs-elektrische Isolatoren mit zusätzlichen Eigenschaften wie Isolationsbarrieren, Bogenschlägen,und Erdschalter, um ihre Leistung und Sicherheit zu verbessern.
Betrieb:
1.Wenn sich der HV-elektrische Isolator in der geschlossenen Position befindet, kommen die Kontakte des Isolators miteinander in Berührung und ermöglichen den Stromfluss durch den Stromkreis.Der elektrische HV-Isolator wird durch manuelle oder ferngesteuerte Bedienung des Isolators geschlossen., je nach Typ des HV-Elektrisitätsisolators.
2.Um einen Teil des Stromsystems zu isolieren, muss der HV-elektrische Isolator geöffnet werden.Dies geschieht typischerweise durch manuelle oder ferngesteuerte Bedienung des Isolators, um die Kontakte zu trennen und den Stromfluss durch die Schaltung zu unterbrechen.
3.Sobald der HV-Elektrisolator geöffnet ist, wird der an den Isolator angeschlossene Teil des Stromsystems vom Rest des Systems isoliert.Dies ermöglicht eine sichere Wartung oder Reparatur auf der isolierten Schaltung.
4Wenn die Wartungs- oder Reparaturarbeiten abgeschlossen sind, kann der elektrische HV-Isolator geschlossen werden, um den Strom in den isolierten Stromkreis wiederherzustellen.Dies geschieht durch manuelle oder Fernbedienung des Isolators, um die Kontakte zu verbinden und den Stromfluss durch die Schaltung wiederherzustellen.
Zustand:
1Die Höhe beträgt nicht mehr als 1000 m.
2.Die Umgebungslufttemperatur: Maximum + 40'C;Minimum:Allgemeine Fläche -30'C, Paramos -40'C;
3.der Winddruck nicht mehr als 700 Pa. (entsprechend 34 m/s Windgeschwindigkeit);
4Die Erdbebenintensität beträgt nicht mehr als 8 Grad.
5.Die Arbeitssituation ist ohne häufige heftige Vibrationen;
6Die Anlagestelle eines Isolators des gewöhnlichen Typs sollte von Gas, Rauch, chemischen Ablagerungen, Salz-Spray-Nebel und Staub ferngehalten werden.
und andere explosionsfähige und ätzende Stoffe, die die Isolierung und Leitfähigkeit des Isolators ernsthaft beeinträchtigen
7.Verunreinigungssicherer Typ Isolator gilt für stark schmutzige Leitungsbereich, sollte es jedoch keine explosiven Stoffe und Feuer verursachen
Technische Parameter:
Seriennummer | Parameter | Einheit | Daten | |||||||||
1 | Nennspannung | KV | 12 | |||||||||
2 | Nennstrom | Modell Nr. | (H) GW9-12 ((W)/630-20 | Eine | 630 | |||||||
(H) GW9-12(W)/1000-20 | 1000 | |||||||||||
(H) GW9-12 ((W)/1250-31.5 | 1250 | |||||||||||
3 | 4s Kurzzeitstrom | Modell Nr. | (H) GW9-12 ((W)/630-20 | kA | 50 | |||||||
(H) GW9-12(W)/1000-20 | 50 | |||||||||||
(H) GW9-12 ((W)/1250-31.5 | 80 | |||||||||||
4 | Nennbelastung | Blitzschlag widerstehen Spannung ((Peak) | Polar-Erde (Positiv und Negativ) |
KV | 75 | |||||||
Zwischenbruch (Positiv und Negativ) |
85 | |||||||||||
Industriefrequenz-Widerstandsspannung (1 min) (Wirkungswert) |
Trocken-/Nassprüfung | Polar-Erde | 42 ((Trocknen) 34 ((Feuchtigkeit) |
|||||||||
Zwischenbruch | 48 ((Trocknen) | |||||||||||
48 ((Trocknen) | ||||||||||||
48 ((Trocknen) 40 ((Feuchtigkeit) |
||||||||||||
5 | Widerstand des Hauptkreislaufs | Schnittstellen | 630 | |||||||||
1000 | ||||||||||||
1250 | ||||||||||||
6 | Mechanische Lebensdauer | Zeiten | 50 | |||||||||
50 | ||||||||||||
80 |